中国学术文献网络出版总库

刊名: 教育研究
主办: 中国教育科学研究院
周期: 月刊
出版地:北京市
语种: 中文;
开本: 大16开
ISSN: 1002-5731
CN: 11-1281/G4
邮发代号:2-277

历史沿革:
专题名称:教育理论与教育管理
期刊荣誉:社科双效期刊;国家新闻出版总署收录;中国期刊网核心源刊;CSSCI 中文社会科学引文索引来源期刊;北京大学《中文核心期刊要目总览》来源期刊;
创刊时间:1979

如何引导学生学好函数知识

【作者】 王晓慧

【机构】 黑龙江省伊春林业学校

【摘要】
【关键词】
【正文】  函数是贯穿于初中及高中数学的重要知识,对于培养学生的逻辑思维能力有很大的作用。从数学知识的结构来看,函数是代数的“纽带”,代数式、方程、不等式、数列等都与函数知识有直接联系。函数还是数学后继发展的基础,为以后各种初等函数的学习,以至高等数学中函数概念及性质的研究也奠定了一定的基础。函数既从客观现实中抽象出来,又超越了千变万化的课题的个性,其内涵极为深刻,外延又极为广泛。
  因此,函数的教学非常重要。然而,函数的学习对于中职学生来说却是个难点,作为数学教师应该如何分析这些困难,又要采取什么样的教学方法才能更好地帮助学生进行函数的学习,这是值得大家共同关注的重要课题。
  在此根据多年的教学经验,对中职学生学习函数的教学作出以下建议:
  一、抓住函数概念核心,加强概念形成的教学
  理解概念是一切数学活动的基础,学生的概念理解不清就无法进一步学习相关内容。学生只有对函数概念真正的理解了,才能真正理解函数。学生初次接触函数概念时,涉及到很多复杂的层次,包括:(1)在一个“变化”过程中;(2)存在“两个”变量;(3)这两个变量具有一定的“联系”;(4)一个变量的变化会引起另一个变量也“随之”变化;(5)两个变量存在“单值对应”的关系。这将直接导致学生在概括函数概念时出现障碍。另外,学生在学习函数概念之前,接触的基本上是常量数学的内容,是静态的数学知识,而函数研究的是变量与变量之间的关系,其特征是变化的、发展的、处于两个量的相互联系之中的。因此,函数概念形成中的抽象与概括以及对“单值对应”的理解也就成为函数概念教学的难点。
  学生理解和掌握概念的过程实际上是掌握同类事物的共同、本质属性的过程,概念形成和概念同化反映了学生掌握概念的两种不同心理过程。根据中职学生的认知特点,掌握概念的方式应更多的采用概念形成,即从典型、丰富的具体例子出发,学生经过自己的实践活动,从中归纳、概括出一类事物的共同本质特征,从而理解和掌握概念。为了帮助学生形成函数概念,教学中要注意“举三反一”——通过给学生大量客观世界中反映这种变化规律的实例(解析式的、图象的、表格的),让学生经历“发生发展过程”,为学生提供独立概括概念的机会,经过分析、综合、比较而概括出函数概念“单值对应”的本质属性。在此基础上,再“举一反三”——用学生得到的函数概念再去看其他的对应问题,是不是符合函数概念的“单值对应”。在这一过程中,要注意恰当地使用反例,巩固学生对于函数概念的理解。
  二、注意早期渗透,螺旋上升分散教学难点
  在函数概念教学之前,需要提前渗透变化与对应的思想。在中职阶段,由具体的数过渡到用字母表示数,再由字母过渡到代数式、方程及简单的不等式等,都需要不断渗透变量思想的教学,在“变”与“不变”的辩证思想教学中强化学生的变量意识。例如,在有理数的运算中,可以通过让学生进行“对不同的数加上同一个数得到不同的结果”的练习渗透集合、对应、根据法则由自变量求函数值;在进行“求代数式的值”的教学时,可以通过指出“字母每取一个值,代数式就有唯一确定的值”以及进行一些相应练习渗透对应的思想;通过讨论整式、分式、根式中字母的取值范围,可以渗透函数的定义域;等等。这样做,将静态的知识模式演变为动态的讨论,赋予了函数的形式,让学生以运动的观点去领会知识,使学生对“变量”概念的复杂性和辩证性更好的理解。
  三、加强函数与相关内容的联系,用函数观点统领相关内容
  要注意函数思想的应用,用函数思想看问题。数可以看成特殊函数;数的运算可以看成特殊的二元函数;代数式可以容易地被改造成一个函数;数列是特殊的函数;解一元方程就是求一个函数的零点,解三角形化归为一个三角函数的问题;等等。因此,在学习函数概念后,要注意让学生以函数观点去重新审视相关问题。例如,方程f(x)=0就是函数y=f(x)在变化过程中的一个特殊状态,解方程就是求函数的零点,从而对方程的研究(像根的性质、个数、分布范围等)就与对应的函数性质研究联系起来了。再如,求不等式f(x)>0的解集就是考察函数y=f(x)的图象与x轴的位置关系问题,即考虑函数y=f(x)的值大于(或小于)0的自变量x的取值范围。由于函数具有表现的丰富性、变化的过程性等特点用函数观点研究方程、不等式,可以引进运动变化、数形结合等思想,这就给方程和不等式的研究开拓了思路和方法。这对理解他们的意义和解决有关问题都是非常有益的。还可以使学生已有的认知结构得到重新组合,在使知识系统化的过程中,加深对函数思想的理解和运用。
  通过采用以上丰富的教学手段,让学生多层面、多角度地了解函数,明确函数的概念和实质,从而提高学生们对函数的学习能力。