刊名: 教育研究
主办: 中国教育科学研究院
周期: 月刊
出版地:北京市
语种: 中文;
开本: 大16开
ISSN: 1002-5731
CN: 11-1281/G4
邮发代号:2-277
历史沿革:
专题名称:教育理论与教育管理
期刊荣誉:社科双效期刊;国家新闻出版总署收录;中国期刊网核心源刊;CSSCI 中文社会科学引文索引来源期刊;北京大学《中文核心期刊要目总览》来源期刊;
创刊时间:1979
高中数学教学中学生思维能力的培养
【作者】 才本加
【机构】 青海省海南州第二民族高级中学
【摘要】【关键词】
【正文】 摘 要:高中数学教学,教师给把知识正确地,全面地,甚至高密度地传授给学生,但他们是否能够走出“知识山洞”。有专家如是说“当一个人把所学的知识都忘了以后,还保留下来的正是教师要教给学生的。”保留下来的是什么呢?就是能力,是思维素质。知识会随时间的推移而遗忘,而科学的思维能力和分析解决问题的能力却会长久地保留下来。
思维是一种反应。数学思维力求近似到一种非条件反射,比如吃饭自然就有拿筷子和碗,而不需刻意去记着吃饭就要有筷子,有碗。高中数学本身的特点,摒弃了单调的记忆和机械的计算,更多的是一此理性化的东西,故只有丢弃固有的框架,让学生思维不受到束缚,他们才能在知识的黑洞里畅游。
一、已有知识,包括定义,定理,公式的正确处理
教学中重视知识的形成过程的教学,使学生在掌握知识的思维实践中既获得了知识,又得到思维训练。学生往往认为学习定义,定理,公式等只要记熟就行了,对定理的证明,公式的推导很少能给以足够的重视;教师也往往只重视让学生把定义,定理,公式正确地,全面地接受下来,而不去探讨它们的由来和实质,课堂上认真地,严格地对每一个定理加以证明,对每一个公式给以推导,忽略证明和推导的原因。这样学生只会机械的记公式,套定理,而会忽视了运用的前提条件。
二、精心设计课堂教学,用连系的方法教学,训练思维?
我们说一个稍微用功的学生,在课堂上听懂教师讲的课并不难,仿照例题解几道题也完全可以,但是要用学过的知识去解决一个新的问题就不是轻而易举的了。故必须放弃“前提——结论”式的教学,而用以思维为主流,以链结式的学生的思路展开。例数列概念一节的教学,概念较多。如不注重思维引导,只顾孤立地呈现,学生是必会象猴子下山,摘了西瓜,丢了芝麻,也可能会有似象非象之感,我在教学中按下面的方式进行,比较适当。先由集合的概念→ 引入数列概念→ 列举出课本中的几个数列→ 对比集合的特点→ 结合实例归纳出数列的特点→对比集合中的元素→ 引出数列中的项→ 由此得出其序号→ 由序号与项的对应→ 联想到映射→ 一一映射,函数→ 数列与其序号构成一个函数→ 联想到函数的定义域→ 它的定义域是正整数集或它的一个子集→ 有限数列,无限数列,即数列的分类;函数→ 函数的图象→ 由定义域的特性,得出是一群孤立的点;函数→ 函数解析式→ 通项公式概念→ 分析出一个简单数列的通项公式→ 由通项公式写出数列中的前几项→ 看事实,悟规律→ 由前几项写出一个通项公式,(有的可写出不只一个通项公式,有的却写不出通项公式)整个过程都是联系对比所学知识,很自然引出新的问题,既突出了重点,又化解了难点,并且把所有知识一串而成。真可谓一气哈成。
三、数学的综合运用上,应顺应学生的思维去挖掘,而不是强加给学生以解题模式,框架,束缚学生的思维
让他们自己去感受,去体会,去领悟,例题的讲解追求的不是解题过程写得多么详细,而是解题的思维过程,这样学生才不会单纯摹仿,不会缺乏独立分析问题的能力,遇到新问题不会觉得束手无策。
四、注重学生形象思维的能力的培养
思维能力不仅指抽象的逻辑思维,也包括着蕴含“轻捷灵活”的形象思维,即常说的数形结合思想,上面第四点的实例已把它演绎得淋漓尽致。
总之,加强引导学生思维,鼓励创新。益,是深远的。
思维是一种反应。数学思维力求近似到一种非条件反射,比如吃饭自然就有拿筷子和碗,而不需刻意去记着吃饭就要有筷子,有碗。高中数学本身的特点,摒弃了单调的记忆和机械的计算,更多的是一此理性化的东西,故只有丢弃固有的框架,让学生思维不受到束缚,他们才能在知识的黑洞里畅游。
一、已有知识,包括定义,定理,公式的正确处理
教学中重视知识的形成过程的教学,使学生在掌握知识的思维实践中既获得了知识,又得到思维训练。学生往往认为学习定义,定理,公式等只要记熟就行了,对定理的证明,公式的推导很少能给以足够的重视;教师也往往只重视让学生把定义,定理,公式正确地,全面地接受下来,而不去探讨它们的由来和实质,课堂上认真地,严格地对每一个定理加以证明,对每一个公式给以推导,忽略证明和推导的原因。这样学生只会机械的记公式,套定理,而会忽视了运用的前提条件。
二、精心设计课堂教学,用连系的方法教学,训练思维?
我们说一个稍微用功的学生,在课堂上听懂教师讲的课并不难,仿照例题解几道题也完全可以,但是要用学过的知识去解决一个新的问题就不是轻而易举的了。故必须放弃“前提——结论”式的教学,而用以思维为主流,以链结式的学生的思路展开。例数列概念一节的教学,概念较多。如不注重思维引导,只顾孤立地呈现,学生是必会象猴子下山,摘了西瓜,丢了芝麻,也可能会有似象非象之感,我在教学中按下面的方式进行,比较适当。先由集合的概念→ 引入数列概念→ 列举出课本中的几个数列→ 对比集合的特点→ 结合实例归纳出数列的特点→对比集合中的元素→ 引出数列中的项→ 由此得出其序号→ 由序号与项的对应→ 联想到映射→ 一一映射,函数→ 数列与其序号构成一个函数→ 联想到函数的定义域→ 它的定义域是正整数集或它的一个子集→ 有限数列,无限数列,即数列的分类;函数→ 函数的图象→ 由定义域的特性,得出是一群孤立的点;函数→ 函数解析式→ 通项公式概念→ 分析出一个简单数列的通项公式→ 由通项公式写出数列中的前几项→ 看事实,悟规律→ 由前几项写出一个通项公式,(有的可写出不只一个通项公式,有的却写不出通项公式)整个过程都是联系对比所学知识,很自然引出新的问题,既突出了重点,又化解了难点,并且把所有知识一串而成。真可谓一气哈成。
三、数学的综合运用上,应顺应学生的思维去挖掘,而不是强加给学生以解题模式,框架,束缚学生的思维
让他们自己去感受,去体会,去领悟,例题的讲解追求的不是解题过程写得多么详细,而是解题的思维过程,这样学生才不会单纯摹仿,不会缺乏独立分析问题的能力,遇到新问题不会觉得束手无策。
四、注重学生形象思维的能力的培养
思维能力不仅指抽象的逻辑思维,也包括着蕴含“轻捷灵活”的形象思维,即常说的数形结合思想,上面第四点的实例已把它演绎得淋漓尽致。
总之,加强引导学生思维,鼓励创新。益,是深远的。